Application of Multimodal Optimization for Uncertainty Estimation of Computationally Expensive Hydrologic Models
نویسنده
چکیده
The generalized likelihood uncertainty estimation (GLUE) framework has been widely used in hydrologic studies. However, the extensive random sampling causes a high computational burden that prohibits the efficient application of GLUE to costly distributed hydrologic models such as the soil and water assessment tool (SWAT). In this study, a multimodal optimization algorithm called isolatedspeciation-based particle swarm optimization (ISPSO) is employed to take samples from the search space. A comparison between the ISPSOGLUE, proposed here, and traditional GLUE approaches shows that the two approaches generate similar uncertainty bounds, but that the convergence rate to stable uncertainty bounds is much faster for ISPSO-GLUE than for GLUE. That is, ISPSO-GLUE needs a much smaller number of samples than GLUE to arrive at a very similar answer. Although ISPSO-GLUE slightly underestimated the prediction uncertainty and missed a number of observed values, the proposed approach is considered to be a good alternative to the typical GLUE approach that employs random sampling. DOI: 10.1061/(ASCE)WR.1943-5452.0000330. © 2014 American Society of Civil Engineers. Author keywords: Hydrology; Uncertainty; Particle swarm optimization; GLUE; SWAT.
منابع مشابه
تخمین عدم قطعیت مدل شبیه سازی سیلاب HEC-HMS با استفاده از الگوریتم مونت کارلو زنجیره مارکوف
There are some parameters in hydrologic models that cannot be measured directly. Estimation of hydrologic model parameters by various approaches and different optimization algorithms are generally error-prone, and therefore, uncertainty analysis is necessary. In this study we used DREAM-ZS, Differential Evolution Adaptive Metropolis, to investigate uncertainties of hydrologic model (HEC-HMS) pa...
متن کاملEvaluating and developing parameter optimization and uncertainty analysis methods for a computationally intensive distributed hydrological model
Evaluating and Developing Parameter Optimization and Uncertainty Analysis Methods for a Computationally Intensive Distributed Hydrological Model. (August 2008) Xuesong Zhang, B.S, Qingdao University, China; M.S., Beijing Normal University, China Chair of Advisory Committee: Dr. Raghavan Srinivasan This study focuses on developing and evaluating efficient and effective parameter calibration and ...
متن کاملAutomatic Calibration of HEC-HMS Model Using Multi-Objective Fuzzy Optimal Models
Estimation of parameters of a hydrologic model is undertaken using a procedure called “calibration” in order to obtain predictions as close as possible to observed values. This study aimed to use the particle swarm optimization (PSO) algorithm for automatic calibration of the HEC-HMS hydrologic model, which includes a library of different event-based models for simulating the rainfall-runoff pr...
متن کاملInflation and Inflation Uncertainty in Iran: An Application of GARCH-in-Mean Model with FIML Method of Estimation
This paper investigates the relationship between inflation and inflation uncertainty for the period of 1990-2009 by using monthly data in the Iranian economy. The results of a two-step procedure such as Granger causality test which uses generated variables from the first stage as regressors in the second stage, suggests a positive relation between the mean and the variance of inflation. However...
متن کاملDevelopment of PSPO Simulation Optimization Algorithm
In this article a new algorithm is developed for optimizing computationally expensive simulation models. The optimization algorithm is developed for continues unconstrained single output simulation models. The algorithm is developed using two simulation optimization routines. We employed the nested partitioning (NP) routine for concentrating the search efforts in the regions which are most like...
متن کامل